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EFFECT OF HEAT FLOW ON HEAT-TRANSFER CHARACTERISTICS

FOR A SUPERSONIC SPATIAL FLOW

AROUND A SPHERICALLY BLUNTED CONE

UDC 536.24.01V. I. Zinchenko and A. Ya. Kuzin

Heat-transfer processes for a supersonic spatial flow around a spherically blunted cone were studied
by solving direct and inverse three-dimensional problems taking into account heat flow along the
longitudinal and circumferential coordinates. It is shown that highly heat-conducting materials can
be used to advantage to decrease the maximum temperatures on the windward side of streamline
bodies.

In [1–7], it was shown that the use of highly heat-conducting materials and injection in supersonic flight
vehicles provides for a decrease in surface temperature in the region of high thermal loads. The more and more
stringent requirements on the accuracy in determining heat-transfer characteristics necessitate the improvement
of mathematical models and methods for calculating heat- and mass-transfer processes in gas and solid phases [8]
and the development of other methods for heat-transfer calculations, such as methods for solving inverse problems
(IP) [9]. Solutions of IP allow one to control and refine the solution of the conjugate problem and to reduce
the calculation time. In addition, they are irreplaceable when the only available experimental information is the
temperature at some points or on a part of the shell of a streamline body [6, 7]. However, the ill-posedness of IP of
heat transfer [9] complicates their solution because in this case, one needs to develop and use a special regularizing
algorithm. The difficulties of solution increase considerably for non-one-dimensional IP. At the same time, the
use of combined methods of thermal protection based on the simultaneous employment of highly heat-conducting
materials and gas injection leads to the necessity of developing appropriate methods for solving multidimensional
IP.

The effect of heat flow on heat-transfer characteristics was investigated for axisymmetric flow [1–3, 6, 7] and
for motion at incidence [4, 5]. In the last case, heat flow occurs not only along the longitudinal but also along the
circumferential coordinate because of the large difference in heat-transfer rate between the windward and leeward
sides. Therefore, to correctly consider heat-transfer processes, it is necessary to use three-dimensional formulations
of the direct and inverse problems [10].

In the present paper, considering the problem of heating of the shell of a spherically blunted cone in a
supersonic spatial high-enthalpy airflow in a full mathematical formulation, we discuss algorithms and results
of solution of direct and inverse three-dimensional heat-transfer problems. In the IP, the initial experimental
information is the temperature on the rear surface of the shell as a function of the longitudinal and circumferential
coordinates and time. We study the effect of heat flow along the longitudinal and circumferential coordinates on
heat-transfer characteristics and limits of applicability of the solution of the IP in the one- and two-dimensional
formulations for various materials of the shell.

1. Physical and Mathematical Formulation of Direct and Inverse Problems. We consider the
heating of a spherically blunted cone in a supersonic airflow at incidence (Fig. 1). In regions I and II, heat transfer
is described by heat-conduction equations in a natural system of coordinates attached to the body surface (the
coordinate origin is at the point of intersection of the body symmetry axis with the surface):
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Fig. 1
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0 < n1 < L, 0 < s < sB , 0 < η < π, 0 < t 6 tfin.

The initial and boundary conditions are

T
∣∣∣
t=0

= Tn; (1.2)

qw − εσT 4
w = −λ ∂T

∂n1

∣∣∣
w
, 0 6 s 6 sB ; (1.3)

∂T

∂n1
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L

= 0, 0 6 s 6 sC , (1.4)

condition on line BC is
∂T

∂s
= 0, (1.5)

and condition in the plane of symmetry is
∂T

∂η

∣∣∣
η=0

=
∂T

∂η

∣∣∣
η=π

= 0. (1.6)

For region I, H = (RN − n1)/RN and r = (RN − n1) sin s̄ and for region II, H = 1 and r = (RN − n1) cos θ
+ (s− sA) sin θ. Here s̄ = s/RN and s = sA + cos−1 θ[z + (sin θ − 1)RN ].

The heat flux from the gas phase qw is given by the formulas of [11] for the spatial case with laminar and
turbulent boundary-layer flows:

qw = (α/cp)(hr − hw). (1.7)

In a coordinate system attached to the stagnation point O1, on the spherical part 0 6 s̃ 6 s̃∗ for laminar
boundary-layer flow, we have

α/cp = 1.05V 1.08
∞ (0.55 + 0.45 cos 2s̃)/(RN/ρ∞)0.5,

(1.8)
hr = he0[(pe/pe0)(γ−1)/γ + (ue/vm)2Pr 0.5]

and for turbulent flow in the region s̃∗ < s̃ < s̃1, we have

α/cp = 16.4V 1.25
∞ ρ0.8

∞ (3.75 sin s̃− 3.5 sin2 s̃)/[R0.2
N (1 + hw/he0)2/3],

(1.9)
hr = he0[(pe/pe0)(γ−1)/γ + (ue/vm)2Pr 1/3].

On the conical part of the body for turbulent flow in the region s̃1 6 s̃ 6 s̃B , we have

α/cp = 16.4V 1.25
∞ ρ0.8

∞ 2.2(pe/pe0)(ue/vm)/[R0.2
N (1 + hw/he0)2/3k0.4r̄0.2

2w ]. (1.10)

In (1.1)–(1.10), t is time, n1, s, and η are the components of the natural coordinate system, T is the temperature,
p is the pressure, ρ is the true density, c and λ are the heat capacity and thermal conductivity, h is the enthalpy,
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H and r are the Lamé coefficients of cylindrical coordinates, α/cp is the heat-transfer coefficient, RN is the radius
of the spherical bluntness, σ is the Stefan–Boltzmann constant, ε is the emissivity of the surface of the streamlined
material, s̃∗ is the coordinate of the point of instability in a coordinate system with origin at the stagnation point,
qw is the convective heat flux from the gas phase, β and θ are the angle of attack and the cone angle, respectively, Pr is
the Prandtl number, L is the thickness of the shell, V∞, ρ∞, and M∞ are the free-stream velocity, density, and Mach
number, γ is the adiabatic exponent, ue/vm = [1− (pe/pe0)(γ−1)/γ ]0.5, vm = (2he0)0.5, he0 = h∞[1+0.5(γ−1)M2

∞],
hw = b1Tw + b2T

2
w/2, and s̃ = arccos (cos s̄ cosβ + sin s̄ sinβ cos η). The subscripts e0 and w refer to the conditions

at the stagnation point on the outer surface of the boundary layer and at the interface between the gas and solid
phases, the subscript ∞ correspond to free-stream conditions, the subscripts in, fin, and asterisk denote the initial,
final, and characteristic parameters, respectively, bar refers to dimensionless quantities, and L to quantities on the
inner surface of the shell.

The three-dimensional direct problem (DP) consists of determining the temperature T (n1, s, η, t) that sat-
isfies Eq. (1.1) in the open region D = {(n1, s, η, t): 0 < n1 < L, 0 < s < sB , 0 < η < 2π, 0 < t 6 tfin} and the
initial and boundary conditions (1.2)–(1.6) and that is continuous together with the derivative ∂T (n1, s, η, t)/∂n1,
∂T (n1, s, η, t)/∂s, and ∂T (n1, s, η, t)/∂η in the closed region D̄. If the temperature T (n1, s, η, t) in the region D̄ is
unknown except on the boundary n1 = L, and it is required to find its values, the convective heat flux qw(s, η, t)
and the total heat flux Qw(s, η, t) = qw(s, η, t) − εσT 4

w on the windward and leeward sides from the known initial
condition (1.2), boundary condition (1.4)–(1.6), and the additional condition

T (L, s, η, t) = T exp
L (s, η, t), (1.11)

the three-dimensional boundary-value IP is solved.
2. Algorithms of Solution of the Direct and Inverse Problems. The three-dimensional DP of

heat transfer was solved by the method of splitting in the space variables n1, s, and η [12]. The one-dimensional
heat-conduction equations obtained by splitting in each time layer were calculated by the integrointerpolation
method (IIM) [13]. Because for motion of the body at incidence, the condition of symmetry at the point s = 0
is not satisfied, the temperature in the s direction was calculated with a variable through step for the windward
and leeward sides subject to the conditions of equal temperatures and heat fluxes at the point s = 0 (“joining”
conditions). As a result, the circumferential coordinate η changed in the range from 0 to π/2, and the temperature
for the remaining values of η was determined using the symmetry conditions at η = 0 and η = π, which reduced
considerably the computing time. An advantage of the proposed algorithm of solution of the DP is its adaptability
because the “joining” conditions are incorporated in the scheme of the IIM and in temperature calculations, they are
automatically used at each node of the difference mesh for the space variables, including the junction “sphere–cone”
in the case of different materials of the spherical and conical parts. The systems of difference equations obtained to
determine the temperature in the n1 and s directions were solved by the method of nonmonotonic marching, and
for the η direction, they were solved by the method of cyclic marching [14] with iterations for the coefficients with
the required accuracy.

In each time layer, both the three-dimensional DP and the three-dimensional IP were solved in three steps
using the method of splitting in space variables. In the first step, the temperature in the n1 direction was determined.
For this, we used a difference scheme obtained by approximation of the derivatives from [6, 7], which gives good
results for one-dimensional IP [15]. As a result, to determine the temperature in the n1 direction for any j and k,
we obtained the recursive relation

Ai+1,j,kTi+2,j,k +Bi+1,j,kTi+1,j,k + Ci+1,j,kTi,j,k = Di+1,j,k. (2.1)

Here Ai+1,j,k = (F1,i+2,j,k + F1,i+1,j,k)/(2h2
n1

) + F2,i+1,j,k/(2hn1), Bi+1,j,k = −(F1,i+2,j,k + 2F1,i+1,j,k

+ F1,i,j,k)/(2h2
n1

) − F5,i+1,j,k/ht + F3,i+1,j,k, Ci+1,j,k = (F1,i+1,j,k + F1,i,j,k)/(2h2
n1

) − F2,i+1,j,k/(2hn1), and
Di+1,j,k = −(F5,i+1,j,k/ht)Tm−1

i+1,j,k+F4,i+1,j,k; the subscripts i, j, k, and m correspond to the current node numbers
in the difference mesh in the n1, s, η, and t directions (i = 1, I, j = 1, J , k = 1,K, m = 1,M), hn1 and ht are the
sizes of the difference mesh along the variables n1 and t, respectively, and F1, F2, F3, F4, and F5 are the coefficients
of the heat-conduction equation

∂

∂n1

(
F1

∂T

∂n1

)
+ F2

∂T

∂n1
+ F3T = F4 + F5

∂T

∂t
, (2.2)

whose form is determined by the formulation of the problem. Equations of this form were used to obtain difference
schemes of the IIM in the s and η directions.
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The nonlinear recursive relation (2.1) was used to determine the temperature at the ith mesh node from the
known temperature at the (i+ 1)th and (i+ 2)th nodes. The temperature obtained at the ith node was specified by
iterations for the coefficients. The known temperature at the (i+ 1)th node was used as the initial approximation.
The computation process began with determining the temperature at the (I − 2)th node. At the Ith node, the
temperature was specified by the experimental function T exp

L (s, η, t) from (1.11), and at the (I − 1)th node, it was
determined from the finite-difference analog of condition (1.4). Using relation (2.1) for i = I − 2, I − 1, . . . , and 1
we determined the temperature consistently at all nodes of the difference mesh in the n1 direction for an arbitrary
(j, k)th beam. The temperature field over the entire shell was determined by employing the above procedure for
j = 1, J and k = 1,K.

In the second step, using the temperature found in the first step as the initial condition in the same time
layer, we determined the temperature in the s direction by the IIM. The system of difference equations with a three-
diagonal matrix obtained by the IIM for the general equation (2.2) with the most general boundary conditions,
including conditions of the first, second, and third kind is given in [13].

In the third step within the time layer considered, we determined the temperature in the η direction using
the difference scheme of the IIM and the cyclicity condition at η = 2π. The temperature on the rear surface of
the shell in the first third of each time layer, used as the boundary condition for calculation of the temperature in
the n1 direction, was chosen such the at the end of that time layer, the experimental temperature (1.11) is equal to
the calculated temperature obtained upon completion of solution of the IP. Next, we turned to the next time layer
and repeated the temperature determination procedure described above. From the temperature field obtained, we
determined the total heat flux Qw(s, η, t) and the convective heat flux qw(s, η, t).

The splitting method and the implicit difference scheme of the IIM, which improves the viscosity property
of the algorithm of the IP compared to explicit schemes, allow this algorithm to be used over a wide time range to
study both fast and long processes of heat transfer. If the error in specifying the initial temperature T exp

L (s, η, t)
is such that undesirable oscillations of the solution of the IP arise, it must be smoothed, for example, by means
of cubic spline functions [16] or one and two-dimensional cubic V-splines [17] or using the Tikhonov regularization
method [18]. If necessary, in the second and third steps, the solution can be regularized. In this case, for the system
of difference equations obtained by the IIM, for example in the s direction

Bi,1,kTi,1,k + Ci,1,kTi,2,k = Di,1,k,

Ai,j,kTi,j−1,k +Bi,j,kTi,j,k + Ci,j,kTi,j+1,k = Di,j,k, j = 2, J − 1, (2.3)
Ai,J,kTi,J−1,k +Bi,J,kTi,J,k = Di,J,k,

we write the Tikhonov functional

Φi,j,k(α) =
J−1∑
j=2

(Ai,j,kTi,j−1,k +Bi,j,kTi,j,k + Ci,j,kTi,j+1,k −Di,j,k)2

+ (Bi,1,kTi,1,k + Ci,1,kTi,2,k −Di,1,k)2 + (Ai,J,kTi,J−1,k +Bi,J,kTi,J,k −Di,J,k)2

+
αk1

h2
s,j

J∑
j=1

(Ti,j,k − Ti,j−1,k)2 +
αk2

~
2
s,j

J∑
j=1

(Ti,j+1,k − Ti,j,k
hs,j

− Ti,j,k − Ti,j−1,k

hs,j−1

)2

. (2.4)

Here ~s,j = (hs,j−1 + hs,j)/2, hs,j are the steps of the variable s, α is the regularization parameter, and k1 and
k2 are certain nonnegative figures; the coefficients of system (2.3) are given in [13].

After minimization of (2.4) for all Ti,j,k (j = 1, J) to determine the temperature in the s direction for fixed i
and k, as in [6], we obtain a system of nonlinear algebraic equations with a symmetric five-diagonal positive-definite
matrix, which is solved by the method of nonmonotonic marching [14] with iterations for the coefficients.

The regularization parameter α is determined by the residual principle[
M∑
m=1

K∑
k=1

J∑
j=1

(TL,j,k,m − T exp
L,j,k,m)2

]0.5

− δ = 0.

Here

δ =

(
M∑
m=1

K∑
k=1

J∑
j=1

σ2
j,k,m

)0.5

is the integral error in specifying the input temperature, σj,k,m is the standard deviation of the error of the function
T exp
L (s, η, t) at the nodes of the difference mesh, TL,j,k,m (j = 1, J , k = 1,K, and m = 1,M) is the calculated
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Fig. 2

temperature at the nodes of the difference mesh on the rear surface of the shell obtained by solving the three-
dimensional DP with the heat flux Qw(Tw) on the boundary n1 = 0 found from the solution of the IP.

3. Results of Numerical Calculations. The spatial DP was tested by comparison with results of
[5], and the IP was tested by comparison with the “exact” solution, i.e., the numerical solution of the spatial DP.
Particular program modules, such as the solution of the parabolic equation (2.2), the solution of systems of algebraic
equations with three and five-diagonal matrices, etc., were tested employing well-known analytical solutions [13,
14]. A 11×41×13 computational mesh was used. The time of solution of the reference three-dimensional version of
the DP before attainment of the steady-state regime (t = 200 sec) was approximately 8 min (the calculations were
performed on Pentium-2). The use of a two times finer spatial mesh resulted in a not more than a 0.5% change of
the result. In operating with data files, we used one and two-dimensional interpolating and approximating cubic
splines. In the boundary layer, we considered a mixed flow regime: laminar flow in the vicinity of the stagnation
point on the spherical shell and turbulent flow on the remaining parts of the spherical shell and the cone. The widely
used model of point transition from laminar to turbulent flow was used. The transition point s̃∗ was determined
such that the sign of the difference in the value of α/cp between the laminar (1.8) and turbulent (1.9) flows changed
with change in s̃ from 0 to s̃1, and this point depended on the parameters included in formulas (1.8) and (1.9).

Repetition calculations were performed for the determining parameters taken from [5]: b1 = 965.5, b2 = 0.147,
Tin = T∞ = 300 K, cp∞ = 103 J/(kg · K), L = 0.005 m, ε = 0.85, RN = 0.0185 m, ρ∞ = 0.208 kg/m3,
V∞ = 2080 m/sec, β = 20◦, θ = 5◦, γ = 1.4, M∞ = 6, and Pr = 0.72.

We considered shell materials with thermal characteristics in a wide range: copper [λ = 386 W/(m ·K), ρ =
8950 kg/m3, and c = 376 J/(kg ·K)], coal–plastic [λ = 0.75 W/(m ·K), ρ = 1350 kg/m3, and c = 1062 J/(kg ·K)],
and steel [λ = 20 W/(m ·K), ρ = 7800 kg/m3, and c = 600 J/(kg ·K)]. The pressure distribution on the body
surface pe/pe0 was obtained from the solution of the spatial gas-dynamic problem [19].

The solutions of the three-dimensional DP of heat transfer are presented in Figs. 2–4, and those of the IP
of heat transfer are presented in Figs. 5 and 6. Figure 2 gives curves of the steady-state (t = 200 sec) surface
temperature Tw,st versus the s̄ coordinate on the windward and leeward sides of the plane of symmetry for copper
(curve 1), steel (curve 2), and coal–plastic (curve 3). Curve 4 shows the distribution of the equilibrium radiation
temperature Tw,eq, which is obtained from the energy conservation equations for the spherical and conical surfaces
qw = εσT 4

w,eq and defines the maximum attainable temperature in the absence of heat flow in the longitudinal and
circumferential directions. As one might expect, the most intense heat flow occurs for copper, and the least intense
heat flow is observed for coal–plastic. For coal–plastic, the steady-state surface temperature differs insignificantly
from the equilibrium radiation temperature because the heating of this material is nearly one-dimensional. Because
of heat flow along the longitudinal and circumferential coordinates, the steady-state surface temperature for copper
far exceeds the on the leeward side and is more than 100 K below the equilibrium radiation temperature on
the windward side. For steel, the steady-state surface temperature is different from the radiation equilibrium
temperature only on the leeward side, and on the windward side, the difference is negligible. The calculation results
for the steady-state regime with λ→∞ show that there is equalization of the temperature profile in the streamline
material (straight line 5). The largest value of the steady-state surface temperature for the materials considered is
observed in the region of maximum heat flux for turbulent boundary-layer flow near the stagnation point.

In Fig. 2, the steady-state surface temperature for steel on the leeward side of the peripheral part of the
cone is below the equilibrium radiation temperature. To explain this effect, we performed numerical calculations
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Fig. 3 Fig. 4

Fig. 5 Fig. 6

to determine the temperature in the one- and two-dimensional cases. Figure 3 shows curves of the steady-state
surface temperature Tw,st versus η for steel at the points with the coordinates s̄ = 3.12, 4.36, and 5.59 (curves 1–3,
respectively). The solid curves are results of solution for the three-dimensional model, the dashed curves are results
of solution for the two-dimensional mode, and the dotted curves are solutions for the one-dimensional model. In the
steady-state case with the adopted boundary conditions, the temperature obtained for the one-dimensional model
coincides with the value of Tw,eq. The curve of Tw,st(η) on the leeward side of the peripheral part of the cone is
nonmonotonic because the heat flux qw has a minimum on the leeward side at η ≈ 2.5 rad, which is due to the
pressure distribution on the outer surface of the boundary layer. This results in a decrease in temperature in this
region because of heat flow in the circumferential direction.

The effect of heat flow on heat-transfer was studied numerically for shells made of copper, steel, and coal–
plastic. The heating problem was solved in one-, two-, and three-dimensional formulations. It is shown that for a
coal–plastic shell, neglect of heat flow along the s̄ and η coordinates leads to a maximum relative error of 1–2% in
determining the steady-state surface temperature, and for a steel shell, this error increases to 5–8% on the leeward
side and does not exceed 1–3% on the windward side. The effect of heat flow is most significant for a copper shell.
Figure 4 shows curves of Tw,st(s̄) for a copper shell in the plane of symmetry obtained with allowance for heat
transfer along n1, s̄, and η (curve 1), n1 and s̄ (curve 2), n1 and η (curve 3), and n1 (curve 4). As is noted above,
curve 4 coincides with the curve of Tw,eq(s̄), which is further proof of the validity of the algorithm and the program.

Figure 5 shows the distribution of the total heat flux over the contour in the plane of symmetry at the times
t = 1 (curves 1) and 5 sec (curves 2) for a copper shell. The solid curves are “exact” solution of the three-dimensional
IP and the dashed curves are numerical solutions. Considering the three-dimensionality of the heat-transfer process
and the complex nonmonotonic dependence Qw(s̄), the heat flux is reconstructed with fairly high accuracy. The
accuracy of reconstructing the steady-state convective heat flux is also high enough. Its maximum value decreases
severalfold compared to the initial value and is approximately 1.2 · 106 W/m2. In Fig. 5, the dot-and-dashed curves
and dotted curves show the dependence Qw(s̄) obtained from the solution of the one-dimensional IP and the two-
dimensional IP, respectively, ignoring heat flow along the circumferential coordinate η. In all calculation versions,
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the initial data for the IP was the “exact ” solution of the three-dimensional DP. The step in time in the IP was
equal to 0.01 sec. An analysis of Fig. 5 shows that neglect of heat flow along the longitudinal and circumferential
coordinates leads to large errors in determining the heat flux. This changes the behavior of the curve of Qw(s̄). The
results obtained leads to the conclusion that in reconstructing the heat flux in a shell made of highly heat-conducting
materials, one need to use three-dimensional algorithms of the IP.

Figure 6 shows the effect of errors in specifying the initial temperature on the solution of the IP. As an
example, the initial temperature specified at ten points in time with a step of 0.5 sec was “disturbed” in time under
a saw-tooth law with an amplitude of 1% of its current value. The solid curves show the “exact” dependences
of the heat flux on time, the dashed curves are obtained from the solution of the IP with undisturbed initial
temperature, and the dot-and-dashed and dotted curves were obtained with disturbed temperature without its
preliminary smoothing or regularization of the solution (dot-and-dashed curves) and by smoothing by the Tikhonov
regularization method (dotted curves). All time dependences of the heat flux are given in the plane of symmetry at
the points with the coordinates s̄ = 0.89 (curves 1) and s̄ = 1.04 (curves 2). The results suggest that the proposed
algorithm is very effective for solving three-dimensional IP.

Thus, the developed algorithms for solving three-dimensional direct and inverse heat-transfer problems were
used to study the effect of heat flow along the longitudinal and circumferential coordinates on heat-transfer charac-
teristics. The effect of thermal conductivity on decrease in the maximum temperatures on the most heat-stressed
windward side of the shell of a streamline body was analyzed, and the limits of application of the simplified one-
and two-dimensional models to reconstruction of heat fluxes and surface temperatures for highly heat-conducting
materials are evaluated.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 99-01-00352).
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